Unger, F., Jörg; Robens-Rademacher, Annika; Tamsen, Erik
Abstract
FAIR (findable, accessible, interoperable and reusable) data usage is one of the main principals that many of the research and funding organizations include in their strategic plans, which means that following the main principals of FAIR data is required in many research projects. The definition of data being FAIR is very general. When implementing that for a specific application or project or even setting a standardized procedure within a working group, a company or a research community, many challenges arise. In this contribution, an overview about our experience with different methods and tools is outlined.
We begin with a motivation on potential use cases for the application of FAIR data with increasing complexity starting from a reproducible research paper over collaborative projects with multiple participants such as Round-Robin tests up to data-based models within standardization codes, applications in machine learning or parameter estimation of physics-based simulation models.
In a second part, different options for structuring the data (including metadata schema) are discussed. The first one is the openBIS system, which is an open-source lab notebook and PostgreSQL based data management system. A second option is a semantic representation using RDF based on ontologies for the domain of interest.
In a third section, requirements for workflow tools to automate data processing are discussed and their integration into reproducible data analysis is presented with an outlook on required information to be stored as metadata in the database.
Finally, the presented procedures are exemplarily demonstrated for the calibration of a temperature dependent constitutive model for additively manufactured mortar. A metadata schema for a rheological measurement setup is derived and implemented in an openBIS database. After a short review of a potential numerical model predicting the structural build-up behavior, the automatic workflow to use the stored data for model parameter estimation is demonstrated.