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Digitalization of materials research on thin-film materials using
the example of high-resolution piezoelectric ultrasonic sensors
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Project Overview

DigiMatUS
WA >
= Ultrasonic microscopy for non-destructive examination of A3 ‘

microelectronic structures

(T

= Use of piezoelectric AIN/AISc, 4N thin films for generation of
ultrasound waves

© PVATePla

* Film deposition by reactive magnetron sputtering

Grain boundary structures,

textures \
= DigiMatUS focused on value chain: -

Particles,
inclusions,
. precipitations

9

Cracks

Delamination, / "y g
Machine Process Film Transducer Application [IEEREE Pulse echo methode
-
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Project Overview
DigiMatUS consortium

= 3 industrial partners:

PVA€TePla @ssers [

= 3 academic partners:
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Challenges
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Developing new processes/ materials or optimizing process-material-device value chain often costly and time-

consuming
Few datapoints for machine learning approach

Complex interrelationships of Power,
mutually influencing process parameters Voltage
TSD

Not all relevant machine and process temperature

parameters can be recorded
pressure
gas flow
—
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Project Approach

= Development of an ontology for thin-film processes, properties and materials

= Combination of extensive in-situ measurement of process and plasma properties,
in-situ film growth with ex-situ film and transducer characterization

® Training of machine learning algorithm with available experimental data and expert knowledge

Machine learning

| Database

Knowledge representation
|:> Compare Process
/-’ Parameters
| Analytics data | |:>

Process | Process data

Synthesize
Processparameters New Process
parameters

\
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recrystallized grain structure

Background

h f | d fine-grained,
Thin film deposition region not nanocrystalline,
accessi with preferred
— > orientation
0.1
* Film deposition by vacuum-based reactive magnetron I i
Sputt e ri n g tapered crystallites 10
separated by voids, 1
tensile stress | 9€NSYY pac{ted
fibrous grains
= Film properties strongly depending on process sl o i line separating
- net deposition
conditions » relgi:mg:ss : £* and net etching
3 S accessible

low-energy ion-agsisted dense film

reductidp of deposition by sputtering

[1] A. Anders. “A structure zone diagram including plasma-based deposition and ion etching”. Thin
Solid Films 518.15 (2010), pp. 4087-4090. https://doi.org/10.1016/j.tsf.2009.10.145.

AIN on Si
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Ontology CoatO
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CoatO is BFO based, between mid- and application-

level ontology

PMDCo V3 alignment planned after its release

Vocabulary for machine and process parameter as
well as film properties (e.g. optical and electrical)
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chemical substance
= gas
layer
=/ plasma
specifically dependent continuant
occurrent
process
arcing
coating process
coating from the gaseous state
vacuum deposition
chemical vapour deposition
physical vapour deposition
sputter deposition
direct current sputtering
pulsed direct current sputtering
bipolar pulsed direct current sputtering
hybrid pulsed direct current sputtering
=/ metallic, reactive pulsed direct current sputtering
unipolar pulsed direct current sputtering
ion beam sputtering
magnetron sputtering
metallic sputtering
= metallic, reactive pulsed direct current sputtering
radio frequency sputtering
reactive sputtering
= metallic, reactive pulsed direct current sputtering
coating from the liquid state
coating from the solid state
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Expert knowledge and Machine learning
Approach
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Ontological model to represent dependencies of coating machine and process parameters, plasma properties and

film (growth + properties)

Dependencies and expert knowledge are cast into
hybrid machine learning model with symbolic rules

Reduced parameter space reduces data hunger

Neuro-symbolic learning & reasoning

Intermediate
Input Layer layer Output Layer

vl ~ x
£
. % —> &

A7 N

P —FE
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Experimental Results
Depositions —in situ

= Use of two different machine
configurations for deposition

® |n-situ monitoring of:

“JSputter-up, confocal

two magnetron
Sconfiguration

Sputter down,
double ring magn.

configuration
—
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Intensity [cps]

Experi

mental Results

Analytics — ex situ

= Ex-situ measurement of coated transducers

= Structural, electrical, optical and piezoelectric properties
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Machine Learning / Demonstrator

= Prediction of plasma

properties (emission spectra)
from process parameters

= Color coded to align spectra

with species and their

various excitation states
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Potential Data Analysis
Physical models for spectroscopic data, Deriving physical quantities from emission spectra

. . ll‘ Q) = fTgas My M ar Mse)

calibrated intensity (a.u.)

AI, Sc N2, N2+
0.6 T T . T T . .
calibr. spectrum = Fit by MassiveOES:
05 |- Al@309 , fitted spegtrum A@392nm = Species considered; N2, N2+, Al, (no Scin this
+396nm experiment)
N, N," Assumpti i
i . . i = ption of thermal population
0.4 |
v
0.3 t ( - v v ! Results:
n T.o= 381K
0.2 |
v NNy = 4.8X10-7
"] u _N k JJ L/NAVAV e
0 J I I I I MassiveOES:
300 320 340 360 380 400 Voraé, ., Kusyn, L., Synek, P. (2019) Deducing rotational quantum-state distributions
wavelength (nm) from overlapping molecular spectra. Review of Scientific Instruments 90, 123102
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Conclusion

* Training of machine learning algorithm with experimental data and expert data
= Demonstrator: Prediction of plasma properties from process parameters
= Ongoing:

- Training models for predicting layer properties

— Evaluation of neuro-symbolic model

- Cased-based reasoning for selecting promising process parameters,
prediction of properties of thin films based on process parameters

= Development of a structured experimental and simulation-based digital description of thin-film sensor materials for
ultrasonic microscopy

=
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